Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Transl Immunology ; 13(3): e1497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495918

RESUMO

Objectives: Donor haematopoietic stem cell transplantation treats leukaemia by inducing graft-versus-leukaemia (GVL) immunity. However, this benefit is often mitigated by graft-versus-host disease (GVHD), which is reduced by post-transplant cyclophosphamide (PTCy) alone or combined with tocilizumab (TOC) in humanised mice. This study established a preclinical humanised mouse model of GVL and investigated whether PTCy alone or combined with TOC impacts GVL immunity. Methods: NOD-scid-IL2Rγnull mice were injected with 2 × 107 human peripheral blood mononuclear cells (hPBMCs) on day 0 and with 1 × 106 THP-1 acute myeloid leukaemia cells on day 14. In subsequent experiments, mice were also injected with PTCy (33 mg kg-1) or Dulbecco's phosphate buffered saline (PBS) on days 3 and 4, alone or combined with TOC or control antibody (25 mg kg-1) twice weekly for 28 days. Clinical signs of disease were monitored until day 42. Results: Mice with hPBMCs from three different donors and THP-1 cells showed similar survival, clinical score and weight loss. hCD33+ leukaemia cells were minimal in mice reconstituted with hPBMCs from two donors but present in mice with hPBMCs from a third donor, suggesting donor-specific GVL responses. hPBMC-injected mice treated with PTCy alone or combined with TOC (PTCy + TOC) demonstrated prolonged survival compared to control mice. PTCy alone and PTCy + TOC-treated mice with hPBMCs showed minimal hepatic hCD33+ leukaemia cells, indicating sustained GVL immunity. Further, the combination of PTCy + TOC reduced histological damage in the lung and liver. Conclusion: Collectively, this research demonstrates that PTCy alone or combined with TOC impairs GVHD without compromising GVL immunity.

2.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339054

RESUMO

Allogeneic haematopoietic stem cell transplantation (HSCT) leads to the establishment of graft-versus-leukaemia (GVL) immunity, but in many cases also results in the development of graft-versus-host disease (GVHD). This study aimed to determine if P2X7 antagonism using Brilliant Blue G (BBG) could improve the beneficial effects of post-transplant cyclophosphamide (PTCy) in a humanised mouse model of GVHD, without comprising GVL immunity. NOD.Cg-Prkdcscid Il2rgtm1Wjl (NSG) mice were injected with human peripheral blood mononuclear cells (PBMCs) (Day 0), then with cyclophosphamide (33 mg/kg) on Days 3 and 4, and with BBG (50 mg/kg) (or saline) on Days 0-10. PTCy with BBG reduced clinical GVHD development like that of PTCy alone. However, histological analysis revealed that the combined treatment reduced liver GVHD to a greater extent than PTCy alone. Flow cytometric analyses revealed that this reduction in liver GVHD by PTCy with BBG corresponded to an increase in human splenic CD39+ Tregs and a decrease in human serum interferon-γ concentrations. In additional experiments, humanised NSG mice, following combined treatment, were injected with human THP-1 acute myeloid leukaemia cells on Day 14. Flow cytometric analyses of liver CD33+ THP-1 cells showed that PTCy with BBG did not mitigate GVL immunity. In summary, PTCy combined with BBG can reduce GVHD without compromising GVL immunity. Future studies investigating P2X7 antagonism in combination with PTCy may lead to the development of novel treatments that more effectively reduce GVHD in allogeneic HSCT patients without promoting leukaemia relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Corantes de Rosanilina , Humanos , Animais , Camundongos , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Recidiva Local de Neoplasia/tratamento farmacológico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/métodos , Ciclofosfamida/uso terapêutico , Leucemia/tratamento farmacológico , Estudos Retrospectivos
3.
Pharmaceutics ; 15(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37765233

RESUMO

Graft-versus-host disease (GVHD) is a T cell-mediated inflammatory disorder that arises from allogeneic haematopoietic stem cell transplantation and is often fatal. The P2X7 receptor is an extracellular adenosine 5'-triphosphate-gated cation channel expressed on immune cells. Blockade of this receptor with small molecule inhibitors impairs GVHD in a humanised mouse model. A species-specific blocking monoclonal antibody (mAb) (clone L4) for human P2X7 is available, affording the opportunity to determine whether donor (human) P2X7 contributes to the development of GVHD in humanised mice. Using flow cytometric assays of human RPMI 8266 and murine J774 cells, this study confirmed that this mAb bound and impaired human P2X7. Furthermore, this mAb prevented the loss of human regulatory T cells (hTregs) and natural killer (hNK) T cells in vitro. NOD-scid IL2Rγnull mice were injected with 10 × 106 human peripheral blood mononuclear cells (Day 0) and an anti-hP2X7 or control mAb (100 µg i.p. per mouse, Days 0, 2, 4, 6, and 8). The anti-hP2X7 mAb increased hTregs and hNK cells at Day 21. Moreover, anti-hP2X7 mAb-treatment reduced clinical and histological GVHD in the liver and lung compared to the control treatment at disease endpoint. hTregs, hNK, and hNK T cell proportions were increased, and human T helper 17 cell proportions were decreased at endpoint. These studies indicate that blockade of human (donor) P2X7 reduces GVHD development in humanised mice, providing the first direct evidence of a role for donor P2X7 in GVHD.

4.
Immunol Cell Biol ; 101(7): 639-656, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37191045

RESUMO

Graft-versus-host disease (GVHD) is a life-threatening complication following donor hematopoietic stem cell transplantation, where donor T cells damage host tissues. This study investigated the effect of tocilizumab (TOC) combined with post-transplant cyclophosphamide (PTCy) on immune cell engraftment and GVHD development in a humanized mouse model. NOD-scid-IL2Rγnull (NSG) mice were injected intraperitoneally with 2 × 107 human (h) peripheral blood mononuclear cells and cyclophosphamide (33 mg kg-1 ) or saline on days 3 and 4, then TOC or control antibody (0.5 mg mouse-1 ) twice weekly for 28 days. Mice were monitored for clinical signs of GVHD for either 28 or 70 days. Spleens and livers were assessed for human leukocyte subsets, and serum cytokines and tissue histology were analyzed. In the short-term model (day 28), liver and lung damage were reduced in PTCy + TOC compared with control mice. All groups showed similar splenic hCD45+ leukocyte engraftment (55-60%); however, PTCy + TOC mice demonstrated significantly increased (1.5-2-fold) splenic regulatory T cells. Serum human interferon gamma was significantly reduced in PTCy + TOC compared with control mice. Long-term (day 70), prolonged survival was similar in PTCy + TOC (median survival time, > 70 days) and PTCy mice (median survival time, 56 days). GVHD onset was significantly delayed in PTCy + TOC, compared with TOC or control mice. Notably, natural killer cells were reduced (77.5%) in TOC and PTCy + TOC mice. Overall, combining PTCy with TOC increases regulatory T cells and reduces clinical signs of early GVHD, but does not improve long-term survival compared with PTCy alone.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Linfócitos T Reguladores/patologia , Leucócitos Mononucleares , Camundongos Endogâmicos NOD , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Células Matadoras Naturais/patologia , Camundongos SCID
5.
Curr Opin Pharmacol ; 68: 102346, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634595

RESUMO

Allogeneic hematopoietic stem cell transplantation is used to treat blood cancers, but often results in lethal graft-versus-host disease (GVHD). GVHD is an inflammatory disorder mediated by donor leukocytes that damage host tissues. Purinergic signalling plays important roles in GVHD development in mice but studies of these pathways in human GVHD remain limited. P2X7 receptor activation by ATP on host antigen presenting cells contributes to the induction of GVHD, while activation of this receptor on regulatory T cells, myeloid-derived suppressor cells and possibly type 3 innate lymphoid cells results in their loss to promote GVHD progression. In contrast, A2A receptor activation by adenosine on donor T cells serves to restrict GVHD development. These and other purinergic signalling molecules remain potential biomarkers and therapeutic targets in GVHD.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Imunidade Inata , Linfócitos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/metabolismo , Linfócitos T
6.
Biomolecules ; 12(9)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139148

RESUMO

P2X7 is an extracellular adenosine 5'-triphopshate (ATP)-gated cation channel present on leukocytes, where its activation induces pro-inflammatory cytokine release and ectodomain shedding of cell surface molecules. Human P2X7 can be partially inhibited by amiloride and its derivatives at micromolar concentrations. This study aimed to screen a library of compounds derived from amiloride or its derivative 5-(N,N-hexamethylene) amiloride (HMA) to identify a potential P2X7 antagonist. 6-Furopyridine HMA (6-FPHMA) was identified as a novel P2X7 antagonist and was characterized further. 6-FPHMA impaired ATP-induced dye uptake into human RPMI8226 multiple myeloma cells and human P2X7-HEK293 cells, in a concentration-dependent, non-competitive manner. Likewise, 6-FPHMA blocked ATP-induced Ca2+ fluxes in human P2X7-HEK293 cells in a concentration-dependent, non-competitive manner. 6-FPHMA inhibited ATP-induced dye uptake into human T cells, and interleukin-1ß release within human blood and CD23 shedding from RPMI8226 cells. 6-FPHMA also impaired ATP-induced dye uptake into murine P2X7- and canine P2X7-HEK293 cells. However, 6-FPHMA impaired ATP-induced Ca2+ fluxes in human P2X4-HEK293 cells and non-transfected HEK293 cells, which express native P2Y1, P2Y2 and P2Y4. In conclusion, 6-FPHMA inhibits P2X7 from multiple species. Its poor selectivity excludes its use as a specific P2X7 antagonist, but further study of amiloride derivatives as P2 receptor antagonists is warranted.


Assuntos
Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Adenosina , Trifosfato de Adenosina/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Cães , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Camundongos , Antagonistas do Receptor Purinérgico P2X/farmacologia
7.
Biosci Rep ; 42(9)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35993192

RESUMO

Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic haematopoietic stem cell transplantation (HSCT) for the treatment of haematological cancers and other blood-related disorders. GVHD is an inflammatory disorder, where the transplanted donor immune cells can mediate an immune response against the recipient and attack host tissues. Despite over 60 years of research, broad-range immune suppression is still used to prevent or treat GVHD, leading to an increased risk of cancer relapse and infection. Therefore, further insights into the disease mechanisms and development of predictive and prognostic biomarkers are key to improving outcomes and reducing GVHD development following allogeneic HSCT. An important preclinical tool to examine the pathophysiology of GVHD and to understand the key mechanisms that lead to GVHD development are preclinical humanised mouse models. Such models of GVHD are now well-established and can provide valuable insights into disease development. This review will focus on models where human peripheral blood mononuclear cells are injected into immune-deficient non-obese diabetic (NOD)-scid-interleukin-2(IL-2)Rγ mutant (NOD-scid-IL2Rγnull) mice. Humanised mouse models of GVHD can mimic the clinical setting for GVHD development, with disease progression and tissues impacted like that observed in humans. This review will highlight key findings from preclinical humanised mouse models regarding the role of donor human immune cells, the function of cytokines and cell signalling molecules and their impact on specific target tissues and GVHD development. Further, specific therapeutic strategies tested in these preclinical models reveal key molecular pathways important in reducing the burden of GVHD following allogeneic HSCT.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Modelos Animais de Doenças , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Recidiva Local de Neoplasia
8.
Methods Mol Biol ; 2510: 77-98, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776321

RESUMO

The murine anti-human P2X7 receptor monoclonal antibody (mAb) (clone L4) has been used to study the expression and function of the P2X7 receptor on primary leukocytes, keratinocytes, osteoblasts and neuronal cells, as well as various cell lines. This antibody has also been used to characterize polymorphic variants and isoforms of the P2RX7 gene and P2X7 site-directed mutations, and to identify molecules coassociated with P2X7 in the plasma membrane. This chapter describes the maintenance and cryopreservation of the L4 hybridoma cell line, as well as the generation of tissue culture supernatant containing the anti-human P2X7 mAb, and its subsequent purification by Protein A chromatography and conjugation to DyLight™ 488. Moreover, this chapter describes flow cytometric assays to assess the blocking activity and binding of the anti-human P2X7 mAb against P2X7 on human RPMI 8226 multiple myeloma cells.


Assuntos
Receptores Purinérgicos P2X7 , Proteína Estafilocócica A , Animais , Anticorpos Monoclonais , Células Cultivadas , Hibridomas , Camundongos , Receptores Purinérgicos P2X7/genética
9.
Methods Mol Biol ; 2510: 315-340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776334

RESUMO

Humanized mouse models of graft-versus-host disease (GVHD), where human immune cells are injected into immune deficient mice, are well established and provide opportunities to investigate pathways involved in GVHD development. This chapter provides an overview of human immune cell isolation, injection of these cells into immune deficient mice, monitoring of mice for signs of GVHD, and assessment of human cell engraftment using flow cytometry. Further, this chapter focuses on the P2X7 signaling pathway involved in GVHD, and describes a strategy to block the P2X7 receptor and examine the effect of this on GVHD development.


Assuntos
Doença Enxerto-Hospedeiro , Receptores Purinérgicos P2X7 , Animais , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Doença Enxerto-Hospedeiro/etiologia , Camundongos , Receptores Purinérgicos P2X7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA